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A digital data acquisition system has been used to collect statistical information of 
turbulent burst length for a zero-pressure-gradient transitional boundary layer developing 
on a flat plate with a free-stream turbulence level of 1%. These results are compared with 
numerical predictions from two turbulent-burst models. The traditional model assumes a 
constant spot-generation rate, while the new physical model uses a rate proportional to 
distance from the start of transition. The new model gives a superior prediction of the 
burst-length statistics that supports the flow physics on which it is based. The results also 
demonstrate, through the burst length, gap, and spacing distributions, that new spots are 
not randomly distributed, but are suppressed within a recovery period adjacent to existing 
spots. 
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I n t r o d u c t i o n  

Much research is currently in progress into providing accurate 
boundary-layer transition prediction. These predictions are 
primarily for use in C.F.D. codes for geometries such as gas 
turbine blades or aircraft wings, where the transitional 
boundary layer covers a significant proportion of the wetted 
surface. Currently, prediction relies heavily on empirical 
correlations for flat plates (e.g., Abu Ghannam and Shaw 1980), 
but few data are available for common practical geometries 
including features such as blade curvature and sweep. A fuller 
understanding of the physics for transitional flow is therefore 
desirable so that the effects of geometry can be more reliably 
anticipated. 

Direct Numerical Simulation has been successful in 
accurately predicting transition on flat plates (see Savill 1991) 
and hence presumably in modeling the flow physics. Detailed 
analysis of burst formation and development within these 
numerical models may well improve the understanding of 
transition in the future. Digital signal processing and 
conditional sampling techniques have also advanced experi- 
mental methods enormously over the last decade. This advance 
not only has led to the development of reliable intermittency 
measurement techniques but also permits the separate analysis 
of the turbulent and laminar periods (Kuan and Wang 1989; 
Blair 1992; Fashifar and Johnson 1992). The objective of the 
current work was to use such experimental techniques to 
provide statistical information on turbulent bursts and to 
compare the results with the predictions from two transition 
models. 
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Exper imenta l  a r r a n g e m e n t  

A boundary-layer suction wind tunnel, described by Fashifar 
(1992) and Fashifar and Johnson (1992), was used for the 
measurements. The flat plate has an elliptical leading edge, is 
1219 mm long and 718 mm wide, and is inclined at 0.5 ° to the 
flow such that the stagnation point is located on the upper 
surface of the plate very close to the leading edge. In the current 
work, a turbulence-generating grid is placed 0.75 m upstream 
of the plate leading edge such that the freestream turbulence 
level is close to 1% at all the measurement locations. The upper 
flexible wall is adjusted to provide a zero pressure gradient on 
the plate. All boundary-layer measurements were made using 
a Dantec boundary-layer probe connected to a Dantec C 
system anemometer that was interfaced through a 12-bit a-d 
converter to a PC. The hot-wire signal is digitized at a sampling 
rate of 10 kHz and then linearized by means of a look-up 
calibration table. A full description of this procedure and 
hot-wire calibration is given in Fashifar (1992). 

The algorithm for laminar/turbulent discrimination is 
described in detail in Fashifar and Johnson (1992). The hot 
wire is placed close to the plate surface (y/6 ~ 0.1). The digitized 
signal is linearized and then filtered using a Butterworth 
high-pass filter with a cutoff frequency of U/2n6 Hz, where U 
is the free-stream velocity and 6 the boundary-layer thickness. 
This frequency corresponds approximately to the frequency of 
the largest turbulent vortices that can be accommodated in the 
boundary layer, and hence low frequencies removed by the filter 
are due to laminar instability waves or fluctuations convected 
from the free stream. A window is now placed around the 
filtered signal, and those portions outside the window are 
deemed turbulent. In addition, where the signal is only resident 
within the window briefly (less than 2rc6/U seconds), it is also 
considered to be part of the turbulent-burst signal. The window 
size that gave most reliable results was established empirically 
as 10% of local velocity. 

All the measurements presented were taken with a 
free-stream velocity of 13.8 m/s at five different chordwise 
positions within the transitional boundary layer, where the 
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intermittency y equals 0.1, 0.25, 0.5, 0.7, and 0.9. The start and 
end time of each of approximately 20,000 turbulent bursts was 
recorded at each of these chordwise locations, from which 
distributions of burst length, gap length, and burst spacing were 
determined. 

Burst models 

Two models are used to predict burst properties through 
transition. The first or traditional model (Dhawan and 
Narasimha 1958) assumes that all the spots are initiated at the 
start of transition location and then grow at a constant rate in 
the streamwise x and spanwise z directions as they travel 
downstream. Turbulent intermittency is defined as the 
proportion of time at which the flow is turbulent at a fixed 
point in space. Here it is clearer to use an alternative but 
equivalent definition. For a two-dimensional (2-D) boundary 
layer, the intermittency is the proportion of a spanwise line 
occupied by turbulent flow at a fixed instant of time. Using this 
definition, it follows that, if the spots propagate at a rate a, 

dy 
- N a  (1) 

dx 

where N is the number of spots present per unit length of the 
line. 

The spots are initiated at the start of transition position at 
a rate of n per unit span per unit time and therefore reach the 
spanwise line at the same rate. However, some of the spots 
merge with neighboring spots at a rate of yn/Us prior to 
reaching this line. In addition, the turbulent regions on the line 
will grow and merge with neighboring regions at a rate of 
N2a/(1 - y). Thus the overall rate of appearance of spots is 

d N  (1 - y)n N 2a 
- ( 2 )  

dx  U s (1 - y) 

Combining Equations 1 and 2, 

( dy'12 a n  

( 1 - y ) ~ - I - \ d x x j  - U s s ( 1 - 7 )  2 = 0  (3) 

Assuming an~Us is constant, 

y = l - e x p  - 2 U s ( X - X s )  2 (4) 

o r  

y = 1 - exp (-0.412~ 2) (5) 

where ~ = ( X s -  xo .2s ) / (xo .~5-  xo.25) is the Narasimha di- 
mensionless length parameter. It follows that the burst 
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Figure I Comparison of analytical and numerical results for 
traditional burst model 

observance rate is given by 

N/Nma x = 1.5(1 - y)( (6) 

The model was implemented on a computer by considering a 
spanwise line, of unit length, as it travels downstream at the 
spot velocity Us. Spots are generated at random positions on 
this line at a constant rate of n spots per unit time per unit 
span and are allowed to grow in the spanwise direction at a 
constant rate of a units span per unit length traveled in the 
streamwise direction. New spots are initiated by a random- 
number generator only when this leads to a spot position within 
a laminar region. In addition when the gap reduces to zero 
between any two adjacent spots due to their growth, they merge 
and are subsequently considered as a single spot. 

Values of Us, tr, and n are chosen in order to provide a 
sufficiently large number of turbulent bursts (over 500,000) for 
statistical analysis. The intermittency values should be 
independent of an~Us, as shown by Equation 5. The code is 
therefore verified by comparing the computational results for 
intermittency and burst rate with the analytical values given 
by Equations 5 and 6. As shown in Figure 1, a very close 
correlation clearly exists between the numerical and analytical 
results, which is taken as confirmation that no significant 
changes would occur if a larger number of bursts had been 
considered. 

The second, new model is based on the physical start of the 
transition criterion formulated by Johnson. Johnson (1993) 
used physical arguments to demonstrate that when the 
instantaneous velocity close to the wall drops to 50% of the 

Notation 

l 
T 
n 

N 
r 

t 

U 
Us 
X 

Xs 

Xo.25,  Xo.75 

Burst length 
Mean burst length 
Spot rate per second per meter span 
Number of bursts per meter span 
Recovery length 
Time 
Free-stream velocity 
Spot velocity 
Streamwise distance along plate 
Start of transition position on plate 
y = 0.25 and 0.75 positions on plate 

G r e e k  s y m b o l s  

Constant in Equation 11 
Intermittency 
Boundary-layer thickness 
Spot growth rate 
= (x - Xs)/(Xo.75 - x0.25 ) - Narasimha transi- 
tion length 
The Narasimha dimensionless length param- 
eter, (Xs - Xo.2s)/(Xo.75 - Xo.2s) 
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local mean velocity, a turbulent spot will be generated. Now, 
assume that the near wall velocity signal can be approximated 
by the isotropic power spectrum used by Hinze (1959), i.e., 

4u'2~/= 1 + (7) 
E U  

where E is the power spectral density, f is the turbulent 
frequency, u '2 is the turbulent kinetic energy, and l is the 
integral length scale. If such a signal (Figure 2) is analyzed, the 
distribution of velocity "trough" depths is as shown in Figure 3. 

For  levels of / Jb /U ' rms>  1.2, this proportion can be 
represented by 

P = Utrms/U b -- 0 . 4  

1.6 (8) 

Now using Johnson's criterion that u~, = u /2  for spot 
initiation, 

P = U',ms/U - 0.2 (9) 
0.8 

Johnson (1993) also provides an empirical correlation for the 
growth of the fluctuations close to the wall, namely, 

UU,rm s ( ; ) 2  
v ~ = f l R e ~ T u  (lO) 

J' lu'rme 
3 

2 

o; 
-1  

- 2  i 
o 1 

Figure 2 
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Isotropic turbulent signal 
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3 J~ ~ u'b/u'rms ~ u'rms/u'b - -  Equation 8 
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Figure 3 Depth of spots producing troughs in an isotropic 
turbulent signal 
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Figure 4 Comparison of analytical and numerical results for new 
physical burst model 

where fl is a constant that depends on the free-stream turbulent 
level. For  a fiat-plate laminar boundary layer, Rea z is 
proportional to Rex, and Equations 9 and 10 indicate that the 
number of spot-inducing troughs will increase linearly with 
downstream distance. Therefore, in the new model, 

o-n 
- -  = ~<(x - x s )  ( 1 1 )  
Us 

where ~ is a constant. This leads to the algebraic relationships 

7 = 1 - exp (-0.0941 ~3) (12) 

and 

N 
= 0.528(1 - 7)( 2 (13) 

Nmax 
Again, the numerical results with a maximum of over 500,000 

bursts closely resemble the algebraic values, as shown in Figure 
4. 

Burst  length 

The experimental results for burst lengths at 7 = 0.1, 0.25, 0.5, 
0.7, and 0.9 are presented as histograms in Figures 5a to 5e, 
respectively. The distributions appear similar through transi- 
tion, but small differences do exist, as shown when the 
distributions are compared in Figure 6. At low intermittencies, 
the average gap between bursts is large, and hence the number 
of mergings between bursts is small. It therefore follows that 
the probability of very long bursts due to one or more mergings 
of shorter bursts is very low, with only 4% of the turbulent 
period consisting of bursts that are more than four times the 
average burst length at y = 0.1. As the intermittency increases, 
mergings become more frequent, and hence there is an increase 
in the proportion of long bursts with a compensating decrease 
in shorter bursts, as shown in Figure 6. 

The results from the traditional model (Figure 7) differ 
significantly from the experimental distributions and also show 
a greater variation with intermittency. At ~ = 0.1, a rapid 
decrease exists for the model distribution for the number of 
bursts longer than 1.57. This is because the constant 
spot-generation rate assumed in the model will lead to, prior 
to any merging, an equal number of bursts in each band and 
to the "no merging" distribution shown in Figure 7. The small 
number of bursts longer than the 1.5 7 critical length therefore 
result from the merging of shorter bursts. Since the 
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5 Figure 5 Measured  burs t - l eng th  d is t r ibut ions.  (a) 7 = 0.1; (b)  

7 = 0.25;  (c)  ~ = 0.5; (d)  ~ = 0.7; (e) 7 = 0.9 

experimental results in Figure 5a do not exhibit this rapid 
decrease, it can be concluded that the assumption of a constant 
spot-generation rate is invalid. As the intermittency increases, 
this feature in the model distribution becomes less significant, 
although it is still apparent up to 3' = 0.5. It is only finally 
erradicated once sufficient merging of the early bursts has 
occurred. Thus the model results at y = 0.7 and y = 0.9 are 
fairly similar to the experimental distributions. 

The new-model results bear a much closer resemblance to 
the experimental distribution, as shown in Figure 8. In this 
case, the spot-production rate is proportional to the distance 

from the start of transition; hence, for low intermittency where 
no merging has occurred, only a few long bursts are present, 
as shown by the parabolic "no merging" distribution in Figure 
8. A trend similar to that of the experimental results is observed 
as the intermittency increases, with an increase in the 
proportion of long bursts and a decrease in short bursts. If the 
distributions at 3, = 0.1 are compared in Figures 5 and 8, 
however, it can be seen that the model predicts a lower 
proportion of bursts with a length less than 27 and a slightly 
larger number of long bursts than were observed experiment- 
ally. This prediction is believed to be because merging of bursts 
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is less probable at low intermittencies than the model suggests. 
This implies that spot-initiation locations are not truly random, 
but tend to be least likely to be close to existing spots, which 
would lead to early merging, and more likely to be distant from 
existing spots, which would delay merging. This in turn may 
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be due to the fact that the troughs in the turbulent viscosity 
signal, which initiate the spots, are not randomly distributed. 
Alternatively, the increased mean velocity in the recovery 
period following each turbulent spot may suppress further spot 
initiation, such that new spots only form some distance from 
existing spots. 

Gap length 
The measured and the two model gap-length distributions are 
shown in Figures 9, 10, and 11, respectively. The distribution 
of gaps at an intermittency ~ is seen to be almost identical to 
the burst-length distribution at an intermittency 1 - ~ .  This 
suggests that the process of shrinkage and disappearance of the 
gaps mimics the appearance and growth of bursts. The 
experimental gap length at ~, = 0.9 (Figure 9) shows a greater 
uniformity of size than either model (Figures 10 and 11), 
suggesting that the gaps are not randomly distributed, but like 
the bursts, tend to a rather more equal spacing. 

Burst spacing 
The spacing is defined here as the distance between the centers 
of consecutive bursts. The experimental spacing distributions, 
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Figure 9 Measured gap-length distributions using the traditional 
model. Band width = 0.25 
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shown in Figure 12, indicate that the most probable spacing is 
close to the mean at all intermittencies. This mean spacing 
becomes more probable as the intermittency increases up to 

-- 0.7, but it decreases once again for higher intermittencies. 
At low intermittency, the burst spacing is large and varies in 
length considerably, with significant number of spacings 4 or 
5 times the average length. However, long gaps between bursts 
are more likely to be divided by new spots than shorter gaps, 
and hence the range of spacings narrows until at 7 = 0.7 a 
negligible number of spacings exist that are greater than four 
times the average. For  7 > 0.7, the intermittency increases, not 
so much due to the formation of new spots but rather due to 
the growth of existing ones. Since all the spots grow at the same 
rate, spots that are close together will tend to merge more 
frequently than those spaced far apart. Therefore, a decrease 
in the proportion of spacings less than about 1.5 times the 
average is observed between 7 =0.7  and 0.9, with a 
compensatory increase in the proportion of longer spacings. 

Figure 13 shows the predicted burst spacing using the 
Dhawan and Narasimha model. The experimental distribution 
at y = 0.1 is well predicted, which suggests that the spots are 
randomly distributed; however, since only a small number of 
widely spaced bursts exist, the effect of suppression of spot 
initiation in the recovery period following each spot will be 

negligible. As the intermittency increases, the predictions 
deviate more from the experimental observations. The 
measurements indicate a rather more regular distribution (i.e., 
a higher proportion of spacings close to the mean) than the 
prediction. This result is probably due to suppression of the 
spot initiation in the recovery period, which has a more 
significant effect as the number of bursts and hence the 
proportion of the signal occupied by the recovery periods 
increases. For y = 0.7, the predicted distribution widens again, 
as observed experimentally, and is due to the more frequent 
disappearance of short spacings due to burst growth and 
merging. 

The new-model burst-spacing distribution predictions are 
shown in Figure 14. These are very similar to the traditional 
model results, with good prediction of the experimental 
distribution at low intermittency but with a wider predicted 
distribution for intermediate and high intermittencies. Differ- 
ences between the two model predictions are due to the fact 
that for intermittencies up to 0.4, the number of bursts is lower 
in the new model. This results in fewer mergings and hence a 
slightly narrower distribution of spacings, which provides a 
slightly improved prediction of the experimental observations. 
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Figure 13 Predicted burst-spacing distributions using the tradi- 
t ional model. Band width = 0.25 
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Recovery-length model 

The reason postulated for differences between the new model 
and measured distributions is that spot formulation is 
suppressed within a recovery length following each existing 
spot. In order to test this postulate, the new model was modified 
to incorporate this effect, with new spots suppressed for 
spanwise distance r adjacent to existing spots where 
r(¢/a2)t/3 = 0.014. Algebraic expressions for intermittency 7 
and burst rate N cannot be determined, and so the model 
results are compared with the zero-recovery-length expressions 
(Equations 12 and 13) in Figure 15. At intermittencies below 
0.35, the number of bursts is reduced, but above this value, 
fewer burst mergings occur because of the more regular burst 
spacing. For ~ > 0.5, the recovery periods occupy a significant 
proportion of the signal, and the resulting suppressions of new 
spots leads to a lower burst rate. Once ~ = 0.9 is reached, the 
recovery periods virtually suppress all new spots, and therefore 
the increase in intermittency is due almost entirely to spot 
growth. Consequently, the intermittency approaches unity 
more slowly than Equation 12 implies. 

Figures 16, 17, and 18 show the modified burst length, gap, 
and spacing distributions, respectively. The effect of including 
recovery period is to narrow the distribution and to increase 

B u r s t  R a t e / M a x i m u m  B u r s t  R a t e  I n t e r r n i t t e n c y  
1.2 ] 1 .2  

i 
• Model Equations 12 and 13 r 

0 . 8  0 . 8  

0.6 0.6 

O.4 O.4 

0.2 0.2 

0 0 
0 1 t 2 3 4 

Figure 15 Comparison of the numerical results for the recovery- 
length model with the analytical results with no recovery length 
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Figure 16 Predicted burst-length distributions using the recovery- 
length model. Band width = 0.25 
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Figure 17 Predicted gap-length distributions using the recovery- 
length model. Band width = 0.25 
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Figure 18 Predicted burst-spacing distributions using the recovery- 
length model. Band width = 0.25 

the height of the peak, which leads to predictions much closer 
to the corresponding measured distributions (see Figures 6, 9, 
and 12). 

C o n c l u s i o n s  

(1) Burst-length distributions are similar through transition, 
but more bursts merge as the intermittency increases, 
resulting in a decrease in the proportion of short bursts 
with a compensatory increase in the proportion of longer 
bursts. 

(2) The physical model formulated by Johnson (1993) gives a 
better prediction of burst- and gap-length distributions than 
the traditional Dhawan and Narasimha (1958) model. 

(3) The random spot-initiation position used in the models 
does not accurately predict experimental burst length at 
low intermittencies or burst spacing at intermediate and 
high intermittencies. However, when spot initiation is 
suppressed within the recovery period following each 
turbulent burst, good prediction of burst, gap, and spacing 
distributions is obtained. 
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